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Introduction 

Historically, nondestructive testing (NDT) has been 
used for detecting macroscopic and microscopic  
discontinuities in structures after they have been in service 
for some time or in new ones. The prominent role in 
nondestructive testing ultrasonic has won because of the 
application versatility, sensitivity and convenience. It has 
become evident that it is practical and cost effective to 
expand the role of the testing to include all aspects of 
materials and structures production and application. The 
main research efforts are being directed at developing 
nondestructive techniques capable of monitoring 
production process, material integrity, the amount and rate 
of degradation during service. However, comprehensive 
understanding of the processes taking place in the testing 
specimen is available only by fully investigating testing 
instrumentation and method. It includes analysis of the 
characteristics of the equipment being used and analysis of 
the wave propagation in the structure under investigation. 
The task is rather complicated, because the series of the 
signal transformations from electrical to mechanical and 
vice versa are encountered, the behavior of the structure is 
predetermined in general by the non linear material 
properties and/or anisotropy. This problem could be 
treated as complex one, dealing with the problems of 
electrical and mechanical origin. This paper is devoted to 
the mechanical ones, trying to find ways for effective 
simulation of the signal propagation in the structure 
subjected to nondestructive testing. In many cases 
simplified methods (e.g., ray tracing) can be used, however 
they are not based upon the differential  equations and, 
consequently, present only rough evaluation of the wave 
front propagation. On the other hand, finite element or 
finite difference methods enable to  get adequate 
representation of the process, however, computer resource 
requirements are usually too great for problems of a 
practical value.  

The situation can be improved by developing efficient 
algorithms of numerical modeling based on deeper 
analysis of the wave propagation phenomenon.  Namely, 
large areas of the structure could be treated as homogenous 
rectangle zones with respect to the ultrasonic’s signal 
wavelength and they could be meshed by uniform 
quadrilateral finite element mesh allowing to obtain the 
solution on a finite element level. Only boundary edges 
having complicated geometrical shape have to be 
approximated by comparatively small freely meshed zones 

(Fig.1). 
Moreover, in the initial stages of the signal 

propagation there is comparatively small number of the 
nodes subjected to the excitation. Actually, model 
increases as the wave propagates (Fig. 2) and the 
possibility to control the model size could be of great 
interest and advantage. 

In order to meet these specifications the finite element 
procedure in regular quadrilateral and free triangular finite 
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Fig.1. Object’s division scheme into rectangle and triangle zones 
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Fig.2. Wave propagation in the object
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element meshes was developed and adopted for the short 
wave propagation modeling in NDT processes.  

Application of the finite element method 
A short wavelength elastic wave propagation analysis 

is performed by solving the structural dynamic equation  
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where [ ]M , [ ]K , [ ] [ ]MC α=   - are the mass, stiffness and 
proportional damping matrices; { }F - the external load 

vector, { }U , { }U& , { }U&&  are the nodal displacement, 
velocity and acceleration vectors of the structure. 

The time integration is being performed by means of 
the central difference integration scheme: 
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were ∆t is the time integration step.  
Generally, the upper limit of discretization steps in 

space and time can be evaluated by means of the inequality 
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where c – is the velocity of the wave in the media, ∆t, ∆x  
are discretization steps in time and space respectively.  

For elastic solid regions, containing several materials, 
we use the discretization steps based on the inequalities  
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where 
ρ
Ec =  is the velocity of propagation of the 

longitudinal wave , E – is the Young's modulus of the solid 
region and ρ is the density of the material. Values 

min max,c c correspond to minimum and maximum values of 
the wave propagation velocity, if the structure contains 
several different materials. This leads to huge 
computational amounts even in 2D case. In steel regions 
with  5200≈c  m/s and the excitation frequency  

3≥exω MHz we obtain 55 10x m−∆ < ×  and the necessary 
number of elements of the square plate of dimension   

mm 1.01.0 × is about 4 million. 
Concerning the NDT problems, the efficiency of the 

algorithms could be improved by taking in to account the 
specific features of the problem. As the approach should 
be oriented to very large models, the computational 
algorithm is being optimized as follows. 

Large domains under investigation are subdivided into 
rectangular areas of uniform quadrilateral finite element 
meshes and small number of areas of arbitrary geometrical 
shape presented by free meshes (Fig. 1). The recursive 
formulae for obtaining nodal displacements could be 
derived by proper time integration scheme modification. 
For regular quadrilateral element meshes formulae (2) is 
used  separately for every individual node. In this case 
[ ]M̂ and [ ]M~  corresponds to a node’s mass and only 
product [ ]{ } tUK  should be calculated. 

The product [ ]{ } tUK  for the regular domains is being 
obtained on the element level and then assembled to nodal 
vector. As all the matrices of the elements in this domain 
are identical, the calculation of the product corresponding 
to node ij , see Fig. 3,  can be presented by the  recursive 
formula as 
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where [ ] , , , 1,2,3,4e
stK s t = are blocks of dimension 2x2 of 

the stiffness matrix of the quadrilateral element, the local 
nodal numbers of which are being assigned from the 
bottom left corner in counterclockwise direction.  
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Fig. 3 Fragment of the finite element model 

 
Formula (2) recalls the relations of the finite difference 

method described in [3], invoking similar number of 
arithmetic operations to be performed during each time 
integration step. However, the finite element approach 
avoids algorithmic difficulties encountered when the finite 
difference model has to be connected with adjacent regions 
of arbitrary shape modeled by free finite element meshes. 
The calculation of the displacements for freely meshed 
domains requires considerably greater amounts of 
computational time per node, however, usually the number 
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of nodes in such domains is small in comparison with the 
total number of nodes of the model. 

Diagonal (lumped) mass and damping matrices are 
being used, therefore no matrix inverses are necessary in 
Eq. (2). 

The domain regularly meshed by quadrilateral 
elements is subdivided into rectangular subdomains, 
displacements of which are stored as files on a hard disc. 
For each subdomain the activity index is supplied 
indicating if the wave has reached the subdomain. Inactive 
subdomains are excluded from computation of 
[ ]{ } tUK and considerable time saving is achieved during 
first stages of the wave propagation. Similarly, the 
subdomains passed by the wave and containing only very 
small residual vibration are indicated as inactive and 
excluded from computation until  they are reached by  the 
next wavefront. It is necessary to mention, that the velocity 
of the excited wave propagation do not coincides with the 
rate at which the induced signal propagates in the finite 
element mesh. At the next time integration step non zero 
displacement value attains nodes, which surround the node 
that had started to vibrate at a previous time step, thus the 

signal propagating rate in the mesh is  
t
x
∆
∆ . According to 

the inequality (5), it is at least 2 times greater than the 
actual velocity of the longitudinal wave. It is possible to 
reduce excitation rate by setting bigger time step, however 
that forces to utilize unconditionally stable algorithms. 
Dynamic stiffness matrices of these algorithms are not 
diagonal and inversion of it essentially reduces the 
efficiency of the method.  

The technique proposed by means of filtering allows 
eliminate the numerical noise which propagates with a 
greater speed than the longitudinal wave. Displacements of 
the nodes are being set to zero value if they do not exceed 
a predefined threshold. Actually it is sufficient to nullify 
all the values below the max

410 u×− , where maxu  
corresponds to the maximum value of the displacement 
since the start of program. Such checks of displacement 
values is being performed after every integration step.  

Products [ ]{ }  tUK could be evaluated for every 
individual rectangular zone by using displacements of 
certain and adjacent zones. If matrices [ ]M̂  and [ ]M~  are 
diagonal, Eq. (2) is used for every zone separately. That 
allows to store in the random access memory only products 
[ ]{ } tUK corresponding to the nodes shared by adjacent 
areas, while products [ ]{ } tUK corresponding to the 
internal nodes of the area are stored on a hard disc. 

Modeling strategies 

The proposed algorithm has been developed for the 
investigation of the two dimensional model. Depending on 
the operating conditions, various plates or even three 
dimensional bodies like liquid/gas vessels, bearing rollers, 
fly-wheels could be examined by using two dimensional 
mathematical models. 

For thin plate modeling the following steps should be 
performed. Firstly, geometrical model identical to the 
shape of the real object is formed. Model is subdivided 
into rectangular zones. Dimensions of the zones are 
defined in such a way that only whole (odd or even) 
number of finite elements of prescribed size could form 
boundaries of the zone. Inner and peripheral fully filled 
zones are meshed by a uniform quadrilateral finite element 
mesh. Since all finite elements are identical, only the 
stiffness matrix of a single element and nodal masses are 
necessary for performing computations. Zones, which are 
not rectangular, are considered as zones of a free shape 
and are meshed by a triangle mesh. For such zones the 
mass [ ]M̂ , [ ]M~  and the stiffness [ ]K  matrices are formed 
and saved on a hard disc.  

In the case of the axis symmetric problem the above 

discussed algorithm is being modified by taking into 
account that  finite element matrices of the elements are 
functions of their radial positions. Therefore the matrix of 
a thin radial strip is being assembled and used for making 
the matrix of the zone, see Fig 4. 

Recursive formulae (7) for obtaining products [ ]{ }tUK  
is being modified accordingly to  Fig.5 as: 
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It is evident that the computation speed for 

axisymmetric models is lower in comparison with the  
plain stress or plain strain models because of additional 
case operators introduced  by variety of finite element’s 
matrices.  

Another important factor to be discussed is the wave 
attenuation phenomenon. If attenuation factor is negligible, 
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Fig. 4. Axis symmetric specimen 
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it could be excluded from the analysis without influencing 
the accuracy of the results. However, frequently it is 
necessary to take that fact into consideration. There is no 
algorithmic and program difficulties to model damped 
wave propagation. Recalling formulas (3) and (4) it can be 
observed that attenuation could be invoked by defining 
damping coefficient and disabled by setting that coefficient 
to zero. For regular zones that operation is performed 
during preprocessing step, and for freely mesh zones – 
during every integration step, causing a computational 
process to be a little longer, see Fig. 11.  

Modeling results 
Developed computer program was used to model a 

wave propagation process in plates and axisymmetric 
structures. Bellow we present some examples of the 
modeling results. Fig.6 and Fig.7 present two dimensional 
plain strain model with different damping ratio subjected 
to a single sinus-shaped excitation signal. The uniformly 
and freely meshed  zones are clearly seen. 

Fig.8 presents a displacement contour plot for the 
axisymmetric model subjected to an ultrasonic signal, see 
Fig.10. Below the same plain strain model is presented in 

order to demonstrate differences between axisymmetric 
and plain strain models (Fig.9). 

Finally, summary of the computer time usage for 
damped and undamped planar and axisymmetric models is 
presented in  Table 1 and Fig.11. 
 
 
 
 

 

Fig.10. Schematic of the  excited signal 

Table 1 

Computer time used ( min, sec) Model size 

(number of 
nodes) 

Undamped 
model  
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model  

Axis symmetric 
model 
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Fig. 5. Fragment of axis symmetric model 

 

Fig. 6. Displacement plot of undamped  wave propagation; (signal 
frequency 1MHz, time=5.9 10-6 s). 

 

Fig. 7. Displacement plot of damped  wave propagation; (signal 
frequency 1MHz, time=5.9 10-6 s, damping ratio 106) 
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Fig.11. Estimation of a computer time 
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15876 1,20 1,22 2,03 

28224 2,22 2,24 3,30 

63001 5,20 5,25 7,47 

251001 35,45 36,45 40,11 

 

 
 

 

 
 

Fig. 8. Displacement contour plot for  wave propagation in axis symmetric model 

 

Fig.9. Displacement contour plot for  wave propagation in plain strain  model 



ISSN 1392-2114 ULTRAGARSAS, Nr.4(37). 2000 

 39

Conclusions 
Conventional methods, including finite element 

method, finite difference method or even combination of 
these methods do not provide solution of short wave 
propagation problems for cases of a practical value. All 
methods require refined model discretization and small a 
integration step size that inevitably leads to large models 
and huge amounts of computational resources. The 
improvement of the effectiveness of a numerical 
simulation can be achieved by using explicit time 
integration schemes in uniform finite element meshes. By 
comparing computational time for solution of the problem 
of dimension up to 200,000 nodes by the conventional 
finite element method and by the proposed technique, it 
was found that the latter technique is nearly 10 times 
faster. On the other hand, the proposed technique enables 
to create and analyze models, solution of which is 
practically impossible by most commercially available 
finite element codes, because of  model size limitations. 
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R Barauskas, V. Daniulaitis 

Ultragarso bangų sklidimo kietame deformuojamame kūne 
modeliavimas 

Reziumė 

Išsamiai ištirti ultragarsinio matavimo proceso dinamiką galima tik 
skaitiškai sprendžiant diferencialines dalinių išvestinių lygtis baigtinių 
elementų arba baigtinių skirtumų metodais. Tačiau net ir nedideliems 
praktiniams uždaviniams išspręsti reikia didelių skaičiavimo resursų 
(laiko ir kompiuterio atminties), kadangi tradicinės baigtinių elementų 
arba baigtinių skirtumų metodų formuluotės neįvertina ultragarsinio 
matavimo proceso savitumų. Atsižvelgiant į tiriamo uždavinio specifiką, 
pasiūlytas ir programiškai sukurtas naujas baigtinių elementų metodo 
algoritmas dvimačiams modeliams tirti. Naudojant sukurtą programą, 
tirtos dvimatės ir ašiai simetrinės konstrukcijos. Gauti rezultatai leidžia 
teigti, kad uždavinys sprendžiamas vidutiniškai dešimt kartų sparčiau, 
palyginti su komerciniu baigtinių elementų programų paketu ANSYS, be 
to, programa iš principo leidžia nagrinėti didesnius modelius. 
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